An advanced cathode for Na-ion batteries with high rate and excellent structural stability.
نویسندگان
چکیده
Layered P2-Na(x)[Ni(1/3)Mn(2/3)]O(2) (0 < x < 2/3) is investigated as a cathode material for Na-ion batteries. A combination of first principles computation, electrochemical and synchrotron characterizations is conducted to elucidate the working mechanism for the improved electrochemical properties. The reversible phase transformation from P2 to O2 is observed. New configurations of Na-ions and vacancy are found at x = 1/3 and 1/2, which correspond to the intermediate phases upon the electrochemical cycling process. The mobility of Na-ions is investigated using the galvanostatic intermittent titration technique (GITT) and the Na diffusion barriers are calculated by the Nudged Elastic Band (NEB) method. Both techniques prove that the mobility of Na-ions is faster than Li-ions in the O3 structure within the 1/3 < x < 2/3 concentration region. Excellent cycling properties and high rate capability can be obtained by limiting the oxygen framework shift during P2-O2 phase transformation, suggesting that this material can be a strong candidate as a sustainable low-cost Na-ion battery cathode.
منابع مشابه
Theoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery
Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...
متن کاملPoly(benzoquinonyl sulfide) as a High‐Energy Organic Cathode for Rechargeable Li and Na Batteries
In concern of resource sustainability and environmental friendliness, organic electrode materials for rechargeable batteries have attracted increasing attentions in recent years. However, for many researchers, the primary impression on organic cathode materials is the poor cycling stability and low energy density, mainly due to the unfavorable dissolution and low redox potential, respectively. ...
متن کاملA low cost, all-organic Na-ion Battery Based on Polymeric Cathode and Anode
Current battery systems have severe cost and resource restrictions, difficultly to meet the large scale electric storage applications. Herein, we report an all-organic Na-ion battery using p-dopable polytriphenylamine as cathode and n-type redox-active poly(anthraquinonyl sulphide) as anode, excluding the use of transition-metals as in conventional electrochemical batteries. Such a Na-ion batte...
متن کاملBoron Substituted Na3V2(P1 −xBxO4)3 Cathode Materials with Enhanced Performance for Sodium‐Ion Batteries
The development of excellent performance of Na-ion batteries remains great challenge owing to the poor stability and sluggish kinetics of cathode materials. Herein, B substituted Na3V2P3-x B x O12 (0 ≤ x ≤ 1) as stable cathode materials for Na-ion battery is presented. A combined experimental and theoretical investigations on Na3V2P3-x B x O12 (0 ≤ x ≤ 1) are undertaken to reveal the evolution ...
متن کاملBinder-free copper hexacyanoferrate electrode prepared by pulse galvanostatic electrochemical deposition for aqueous-based Al-ion batteries
Copper hexacyanoferrate (CuHCF) nanoparticles with tunnel-like Prussian blue structure were deposited on graphite substrate via pulse galvanostatic electrochemical deposition at 25 mA cm-2 with both on-time and off-time periods of 0.1 s, which presented the ability to intercalation/de-intercalation of Al ions reversibly in aqueous solution. The crystal structure of the as-prepared CuHCF f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 9 شماره
صفحات -
تاریخ انتشار 2013